Radio Emission from Cosmic Ray Air Showers

Heino Falcke Max-Planck-Institut für Radioastronomie Peter W. Gorham JPL/NASA/Caltech

Skyview + LOFAR collaborations

A (very) Brief History of Cosmic Rays

Victor Hess, 1912: - discovered cosmic rays in balloon flights, through discharge of Leyden jars

Pierre Auger, 1938: - Research in Giant Air Showers showed energies of primary particles above 10¹⁶ eV-- truly unimaginable for the time!

- 1960's: Cosmic rays with energies of $>10^{19}$ eV detected how are they made??
- Greisen, Zatsepin, Kuzmin (GZK): there should be a limit at ${\sim}5\times10^{19}\,{\rm eV}$

Radio Emission from Air Showers: History

- First discovery: Jelley et al. (1965), Jodrell Bank at 44 MHz
- Firework of activities around the world in the late 60ies & early 70ies
- In the late 70ies radio astronomy moved to higher frequencies and also CR work ceased

Jelley et al. (1965)

Advantages of Radio Air Showers

- Particle detectors on ground only measure a small fraction of electrons or muons produced
- Height of cosmic ray interaction depends on energy
- Energy calibration is greatly improved by additional information (e.g., Cerenkov)
- Radio could
 - Observe 24hrs/day
 - See evolution of shower
 - Coherent emission reveals shape

Radio measurements are usually triggered by particle detectors

Radio-Emission from Air Showers: Current Activities

- Work ceased almost completely in the seventies (interference)
- Radio-experiment at CASA/MIA arrays (Rosner & Suprun 2001) failed because of man- and self-made interference
- An isolated group at Gauhati University (India) is observing regularly at 2-220 MHz
- Monte Carlo air shower radio code developed by Dova et al.
- RICE Searching radio emission from neutrino induced showers in ice at the AMANDA site in Antarctica
- Search for radio emission on the moon (neutrinos; Alvarez-Muniz & Zas 2000; Gorham et al. 1999)

Radio Properties of Airshowers: Radio Amplitude – Empirical Results

$$\mathcal{E}_{\nu} = K \frac{E_p}{10^{17} \text{ eV}} \sin \alpha \cos \theta \exp \left(-\frac{R}{R_0(\nu, \theta)}\right) \quad \mu \text{V} \ m^{-1} \text{ MIIz}^{-1}$$
Allan (1971)

• Constant $K \sim 15$, $R_0 \sim 110$ m, spectrum flat from $\sim 40-100$ MHz?

•
$$S_v = \varepsilon_0 c \varepsilon_v^2 / MHz \Rightarrow S_v = 26.5 MJy (\varepsilon_v / 10 \,\mu V \,m^{-1} \,MHz^{-1})^2$$

- R is distance from shower axis, relation corresponds to ~1 degree half-angle emission cone
- Here α is geomagnetic angle, θ is zenith angle, but not measured past ~50 deg.
- This relation is based on <u>near field measurements</u>: *Fresnel zone* for shower radio emission extends several tens of km, most data is from D~5-7 km!

Radio Properties of Airshowers: Energy Dependence of Amplitude

- Experimental results suggest a quadratic dependence of radio flux on particle energy.
- Particle number: $N_e \sim E_p / \text{GeV}$
- Coherent radiation:

 $\mathcal{E} \propto N_e \propto E_p \& S_v \propto \mathcal{E}^2 \Longrightarrow S_v \propto E_p^2$

• Shower height is energy dependent $\rightarrow 2^{nd}$ order effects?

Radio Properties of Airshowers: Frequency Spectrum

- Measurements at four frequencies between 44 and 408 MHz (Spencer 1969)
- Spectrum decreases as $\mathcal{E} \propto v^{-1}$ or $S_v \propto v^{-2}$
- May continue down to 2 MHz (Allan et al. 1969).
- Noise level favors 40-50 MHz observations

Radio Properties of Airshowers: Spatial Extent

- The particles move as a flat (2-3 m thick) pancake around a central core through the atmosphere.
- The radio emission falls off steeply beyond a characteristic distance from the shower core $(R_0=50-500m)$ \Rightarrow beaming

Amplitude normalized to $E_p = 10^{17} \text{eV}$

Radiation Mechanism: Coherent Synchrotron!?

- The characteristic energy where electrons disappear through strong ionization losses is 30-100 MeV, i.e. γ ~60-200.
- Geomagnetic field is 0.3 Gauss
- Electrons will "gyrate" along a small arc
- Electrons are in a thin layer of 2 meters thickness, i.e. less than a wavelength at 100 MHz
- Coherent emission can be produced (gives N² enhancement), beamed into propagation direction

Radiation Mechanism: Coherent Geo-Synchrotron!?

- Synchrotron emission in geomagnetic field is unavoidable
- Synchrotron power is given by the Poynting vector (charge & accel.)
- Acceleration is due to the Lorentz force
- N electrons act coherently as one particle of charge N · e and mass N · m
- ⇒ Power is increased by N²
 (amplitudes add coherently)

Radiation Mechanism: Coherent Synchrotron!?

$$P_{e} = \frac{2e^{4}}{3c^{5}m_{e}^{2}}\gamma^{2}v_{\perp}^{2}B^{2} \& P_{q} = N^{2}P_{e}$$

$$B = 0.3G \quad \gamma = 60 \quad N_e = 10^8 E_{p,17}$$

$$A = \pi (10 \text{ km} \cdot 0.5^{\circ})^2$$

$$v_{\rm c} \sim \frac{3e}{4\pi m_e c} \gamma^2 B \sim 4.5 \,\mathrm{GHz}$$

$$S_{\nu} = N_e^2 P_e A^{-1} \nu^{-1} \left(\frac{\nu}{\nu_c}\right)^{1/3} f\left(\frac{\lambda}{\Delta z_{shower}}\right)$$

 $S_{v}(100 \,\mathrm{MHz}) \sim 40 \mathrm{MJy} \cdot E_{p,17}^{2}$

Kahn & Lerche (1968), Allan 1971, Falcke & Gorham (2001)

- Synchrotron emission in geomagnetic field is unavoidable
- $\Delta z \sim \lambda @ 100 \text{ MHz} \Rightarrow$ coherence and amplification
- Plug in characteristic values for air showers.
- At the characteristic frequency coherence is not achieved due to finite thickness (decreasing spectrum)
- Predicts correct properties

LOFAR – a new window to the universe

- Low-Frequency Radio Array connected by high-speed internet (10 Tb/sec!)
- Monitors almost entire sky
- Astrophysics: B-fields, Cosmic Ray acceleration, stars, transients, AGN, ...
- monitors ionosphere & interf.
- Will certainly see meteorites and air showers!
- With 15 Mio. Nfl first phase fully funded, 30 M€ promised, completion 2006.

LOFAR – System Characteristics

Instrument type	Earth rotation synthesis array
Low frequency range	10 – 90 MHz
High frequency range	110 – 220 MHz
Number of receptors	13365 dual polarised dipoles for the 10 – 90 MHz range 213840 dual polarised dipoles for the 110 – 220 MHz range
Number of clusters	1485
Number of interferometric stations	Between 60 and 165
Number of digital beams in one frequency channel for a remote station	Between 2 and 8
Instantaneous sky coverage remote station	1 steradian at 20 MHz using 8 beams
Digitised Bandwidth	32 MHz
Spectral range transported from remote stations	Between 2 and 4 MHz
Number of spectral channels	4096
Polarization	full Stokes
Baseline range	Between 100 m and ~400 km
Spectral resolution	1 kHz
Integration time of correlator	Down to 1 ms

LOFAR

- 10² stations with 10² dipoles/antennas each, connected to a central computer supercluster
- Low-Tech "Hardware"
- "Next Generation" computing and internet (Lucent, KPN)
- No mechanical steering beam is digitally synthesized
- Radically new telescope concept which is ideally suited for astroparticlephysics (radio air showers).

LOFAR

- LOFAR collaboration:
 - ASTRON (NL)
 - MIT (USA)
 - Naval Res. Lab. (USA)
 - Smaller groups in Australia, Canada, UK
- Astroparticle aspect is a relatively new baby:
 - MPI für Radioastronomie, Bonn
 - JPL, Pasadena (Goldstone)
 - Skyview collaboration

LOFAR Performance

- Cosmic rays above 10¹⁷ eV are easily detected by radio antennas
- Cosmic ray energy is limited by Galactic radio background and effective area.

LOFAR Performance

- The full LOFAR array will measure CRs from 2 · 10¹⁴ eV to 10²⁰ eV with baselines varying from 1 m to 300 km → unique
- LOFAR will be an ideal multi-purpose air shower detector (almost) ,,for free" – if we know how to use it
- Combine with Skyview to obtain a highly competitive giant air shower array in the northern hemisphere!

LOFAR Performance

- The full LOFAR array will measure CRs from 2 · 10¹⁴ eV to 10²⁰ eV with baselines varying from 1 m to 300 km → unique
- LOFAR will be an ideal multi-purpose air shower detector (almost) ,,for free" – if we know how to use it
- Combine with Skyview to obtain a highly competitive giant air shower array in the northern hemisphere!

LOPES

- What to do until 2006?
- We need to study radio emission from EAS and calibrate the method with conventional arrays.
- ⇒ Build a single LOFAR prototype station (LOPES) in conjunction with Kascade, Coral, Skyview prototype, ...
- Need about 100 dipoles
- Reasonable cost: Cost=x · 10⁵ €, x=1-3

LOFAR Prototype Performance

- 100 dipoles will measure CRs around the knee from 10¹⁵ eV to 10¹⁷ eV and study radio properties of air showers.
- With this knowledge we can add astroparticle capabilities to LOFAR and develop ,,software telescope" technology.
- Test for Auger & Skyview

Scientific Goals of LOPES/LOFAR

- Understand radio emission from air showers (polarization, spectrum, energy dependence, evolution)
- Study composition of UHECR from 10¹⁵ to 10²⁰ eV (Galactic/Extragalactic)
- Path length of 10¹⁸ eV neutrons is 10 kpc ⇒ Galactic neutron astronomy!
- Probe parameter space for unexpected air shower properties (multiplets, patchiness).
- Search for isotropic radio emission \Rightarrow would extend LOFAR to $10^{21.5}$ eV (super-GZK particles)!
- Also: Search for ultra-high energy neutrinos (moon, air)

Conclusion

- The new generation of software telescopes will revolutionize low-frequency radio astronomy.
- LOFAR will come and it will (unexpectedly) be a premier instrument to measure (UHE)CRs.
- LOPES will be an important stepping stone.
- Ideal: Joint development with SKYVIEW
- Provides a golden opportunity for the vibrant German astroparticle community to use the LOFAR project for astroparticle physics!